光流估计的最新方法取决于深度学习,这需要复杂的顺序训练方案才能在现实世界中达到最佳性能。在这项工作中,我们介绍了组合深网,该网络明确利用了传统方法中使用的亮度恒定(BC)模型。由于卑诗省是在几种情况下违反的一个近似物理模型,因此我们建议训练一个与数据驱动网络相辅相成的物理约束网络。我们在物理先验和数据驱动的补体之间引入了独特而有意义的流动分解,包括对BC模型的不确定性量化。我们得出了一个联合培训计划,用于学习分解的不同组成部分,以确保在受监督的情况下,但在半监督的环境中进行最佳合作。实验表明,组合可以改善对最先进的监督网络的性能,例如木筏在几个基准测试中达到最先进的结果。我们强调组合如何利用BC模型并适应其局限性。最后,我们表明我们的半监督方法可以显着简化训练程序。
translated by 谷歌翻译
图像检索通常以平均精度(AP)或召回@k进行评估。但是,这些指标仅限于二进制标签,并且不考虑错误的严重性。本文介绍了一种新的分层AP培训方法,用于相关图像检索(HAP-PIER)。 Happier是基于新的HAP度量,该指标利用概念层次结构来通过整合错误的重要性并更好地评估排名来完善AP。为了用HAP训练深层模型,我们仔细研究了问题的结构,并设计了平滑的下限替代物,并结合了聚类损失,以确保订购一致。在6个数据集上进行的广泛实验表明,更快乐的层次检索的最新方法明显优于最先进的方法,同时在评估细粒度排名表演时与最新方法相当。最后,我们表明更快乐地导致嵌入空间的更好组织,并防止最严重的非等级方法失败案例。我们的代码可在以下网址公开获取:https://github.com/elias-ramzi/happier。
translated by 谷歌翻译
在图像检索中,标准评估度量依赖于分数排名,例如:平均精度(AP)。在本文中,我们介绍了一种稳健和可分解的平均精度(路线图)的方法,解决了对AP的深神经网络的端到端训练的两个主要挑战:非差异性和不分解性。首先,我们提出了一种新的等级函数的新可分辨性近似,这提供了AP损耗的上限并确保了鲁棒训练。其次,我们设计简单但有效的损失功能,以减少整个训练集中的AP之间的分解性差距及其平均批量近似,我们提供理论保证。在三个图像检索数据集上进行的广泛实验表明,路线图优于最近的几种AP近似方法,并突出了我们两个贡献的重要性。最后,使用用于训练的路线图,深度模型产生非常好的表现,表现出三个数据集的最先进结果。
translated by 谷歌翻译
View-dependent effects such as reflections pose a substantial challenge for image-based and neural rendering algorithms. Above all, curved reflectors are particularly hard, as they lead to highly non-linear reflection flows as the camera moves. We introduce a new point-based representation to compute Neural Point Catacaustics allowing novel-view synthesis of scenes with curved reflectors, from a set of casually-captured input photos. At the core of our method is a neural warp field that models catacaustic trajectories of reflections, so complex specular effects can be rendered using efficient point splatting in conjunction with a neural renderer. One of our key contributions is the explicit representation of reflections with a reflection point cloud which is displaced by the neural warp field, and a primary point cloud which is optimized to represent the rest of the scene. After a short manual annotation step, our approach allows interactive high-quality renderings of novel views with accurate reflection flow. Additionally, the explicit representation of reflection flow supports several forms of scene manipulation in captured scenes, such as reflection editing, cloning of specular objects, reflection tracking across views, and comfortable stereo viewing. We provide the source code and other supplemental material on https://repo-sam.inria.fr/ fungraph/neural_catacaustics/
translated by 谷歌翻译
Transformers have proved to be very effective for visual recognition tasks. In particular, vision transformers construct compressed global representations through self-attention and learnable class tokens. Multi-resolution transformers have shown recent successes in semantic segmentation but can only capture local interactions in high-resolution feature maps. This paper extends the notion of global tokens to build GLobal Attention Multi-resolution (GLAM) transformers. GLAM is a generic module that can be integrated into most existing transformer backbones. GLAM includes learnable global tokens, which unlike previous methods can model interactions between all image regions, and extracts powerful representations during training. Extensive experiments show that GLAM-Swin or GLAM-Swin-UNet exhibit substantially better performances than their vanilla counterparts on ADE20K and Cityscapes. Moreover, GLAM can be used to segment large 3D medical images, and GLAM-nnFormer achieves new state-of-the-art performance on the BCV dataset.
translated by 谷歌翻译
Lenia is a family of cellular automata (CA) generalizing Conway's Game of Life to continuous space, time and states. Lenia has attracted a lot of attention because of the wide diversity of self-organizing patterns it can generate. Among those, some spatially localized patterns (SLPs) resemble life-like artificial creatures. However, those creatures are found in only a small subspace of the Lenia parameter space and are not trivial to discover, necessitating advanced search algorithms. We hypothesize that adding a mass conservation constraint could facilitate the emergence of SLPs. We propose here an extension of the Lenia model, called Flow Lenia, which enables mass conservation. We show a few observations demonstrating its effectiveness in generating SLPs with complex behaviors. Furthermore, we show how Flow Lenia enables the integration of the parameters of the CA update rules within the CA dynamics, making them dynamic and localized. This allows for multi-species simulations, with locally coherent update rules that define properties of the emerging creatures, and that can be mixed with neighbouring rules. We argue that this paves the way for the intrinsic evolution of self-organized artificial life forms within continuous CAs.
translated by 谷歌翻译
Humans have been able to tackle biosphere complexities by acting as ecosystem engineers, profoundly changing the flows of matter, energy and information. This includes major innovations that allowed to reduce and control the impact of extreme events. Modelling the evolution of such adaptive dynamics can be challenging given the potentially large number of individual and environmental variables involved. This paper shows how to address this problem by using fire as the source of external, bursting and wide fluctuations. Fire propagates on a spatial landscape where a group of agents harvest and exploit trees while avoiding the damaging effects of fire spreading. The agents need to solve a conflict to reach a group-level optimal state: while tree harvesting reduces the propagation of fires, it also reduces the availability of resources provided by trees. It is shown that the system displays two major evolutionary innovations that end up in an ecological engineering strategy that favours high biomass along with the suppression of large fires. The implications for potential A.I. management of complex ecosystems are discussed.
translated by 谷歌翻译
We consider a model where a signal (discrete or continuous) is observed with an additive Gaussian noise process. The signal is issued from a linear combination of a finite but increasing number of translated features. The features are continuously parameterized by their location and depend on some scale parameter. First, we extend previous prediction results for off-the-grid estimators by taking into account here that the scale parameter may vary. The prediction bounds are analogous, but we improve the minimal distance between two consecutive features locations in order to achieve these bounds. Next, we propose a goodness-of-fit test for the model and give non-asymptotic upper bounds of the testing risk and of the minimax separation rate between two distinguishable signals. In particular, our test encompasses the signal detection framework. We deduce upper bounds on the minimal energy, expressed as the 2-norm of the linear coefficients, to successfully detect a signal in presence of noise. The general model considered in this paper is a non-linear extension of the classical high-dimensional regression model. It turns out that, in this framework, our upper bound on the minimax separation rate matches (up to a logarithmic factor) the lower bound on the minimax separation rate for signal detection in the high dimensional linear model associated to a fixed dictionary of features. We also propose a procedure to test whether the features of the observed signal belong to a given finite collection under the assumption that the linear coefficients may vary, but do not change to opposite signs under the null hypothesis. A non-asymptotic upper bound on the testing risk is given. We illustrate our results on the spikes deconvolution model with Gaussian features on the real line and with the Dirichlet kernel, frequently used in the compressed sensing literature, on the torus.
translated by 谷歌翻译
HTR models development has become a conventional step for digital humanities projects. The performance of these models, often quite high, relies on manual transcription and numerous handwritten documents. Although the method has proven successful for Latin scripts, a similar amount of data is not yet achievable for scripts considered poorly-endowed, like Arabic scripts. In that respect, we are introducing and assessing a new modus operandi for HTR models development and fine-tuning dedicated to the Arabic Maghrib{\=i} scripts. The comparison between several state-of-the-art HTR demonstrates the relevance of a word-based neural approach specialized for Arabic, capable to achieve an error rate below 5% with only 10 pages manually transcribed. These results open new perspectives for Arabic scripts processing and more generally for poorly-endowed languages processing. This research is part of the development of RASAM dataset in partnership with the GIS MOMM and the BULAC.
translated by 谷歌翻译
Accurate diagnosis and prognosis of Alzheimer's disease are crucial to develop new therapies and reduce the associated costs. Recently, with the advances of convolutional neural networks, methods have been proposed to automate these two tasks using structural MRI. However, these methods often suffer from lack of interpretability, generalization, and can be limited in terms of performance. In this paper, we propose a novel deep framework designed to overcome these limitations. Our framework consists of two stages. In the first stage, we propose a deep grading model to extract meaningful features. To enhance the robustness of these features against domain shift, we introduce an innovative collective artificial intelligence strategy for training and evaluating steps. In the second stage, we use a graph convolutional neural network to better capture AD signatures. Our experiments based on 2074 subjects show the competitive performance of our deep framework compared to state-of-the-art methods on different datasets for both AD diagnosis and prognosis.
translated by 谷歌翻译